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The aim of this paper is to present the unsteady boundary layer flow and heat transfer of a fluid towards a
porous stretching sheet. Fluid viscosity and thermal diffusivity are assumed to vary as linear functions of
temperature. Using similarity solutions partial differential equations corresponding to the momentum
and energy equations are converted into highly non-linear ordinary differential equations. Numerical
solutions of these equations are obtained with the help of shooting method. It is noted that due to
increase in unsteadiness parameter, fluid velocity decreases up to the crossing over point and after this
point opposite behaviour is noted. The temperature decreases significantly in this case. Fluid velocity
decreases with increasing temperature-dependent fluid viscosity parameter (i.e. with decreasing viscos-
ity) up to the crossing over point but increases after that point and the temperature decreases in this case.
Due to increase in thermal diffusivity parameter, temperature is found to increase.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The study of hydrodynamic flow and heat transfer over a
stretching sheet has gained considerable attention due to its appli-
cations in industries and important bearings on several technolog-
ical processes. Crane [1] investigated the flow caused by the
stretching of a sheet. Many researchers such as Gupta and Gupta
[2], Chen and Char [3], Dutta et al. [4] extended the work of Crane
[1] by including the effect of heat and mass transfer analysis under
different physical situations.

All the above mentioned studies confined their discussions by
assuming uniformity of fluid viscosity. However, it is known that
the physical properties of fluid may change significantly with tem-
perature. The increase of temperature leads to a local increase in
the transport phenomena by reducing the viscosity across the
momentum boundary layer and so rate of heat transfer at the wall
is also affected. Therefore, to predict the flow behaviour accurately,
it is necessary to take into account the viscosity variation for
incompressible fluids.

Gary et al. [5] and Mehta and Sood [6] showed that, when this
effect is included the flow characteristics may change substantially
compared to constant viscosity assumption. Recently Mukhopad-
hyay et al. [7] investigated the MHD boundary layer flow with var-
iable fluid viscosity over a heated stretching sheet.

All of the above mentioned studies were restricted to the steady
state conditions. The transient or unsteady aspects become inter-
ll rights reserved.
esting in certain practical problems where the motion of the
stretched surface may start impulsively from rest. Elbashbeshy
and Bazid [8] and Sharidan et al. [9] presented similarity solutions
for unsteady flow and heat transfer over a stretching surface.

The present work deals with unsteady fluid flow and heat trans-
fer over a stretching sheet in presence of wall suction. Fluid viscos-
ity and thermal diffusivity are assumed to vary as linear functions
of temperature. Similarity variable and similarity solutions are ob-
tained and using them, a third order and a second order ordinary
differential equations corresponding to momentum and energy
equations are derived. These equations are solved numerically
using shooting method. The effects of different parameters (viz.
unsteadiness, temperature-dependent fluid viscosity, variable
thermal diffusivity and suction) on velocity and temperature fields
are investigated and analysed with the help of their graphical
representations.
2. Equations of motion

We consider unsteady two-dimensional forced convection flow
of a viscous incompressible fluid past a heated stretching sheet im-
mersed in a porous medium in the region y > 0 and moving with
non-uniform velocity U(x, t) = cx

1�at where c, a are positive constants
with dimensions (time)�1, c is the initial stretching rate and c

1�at is
the effective stretching rate which is increasing with time. In case
of polymer extrusion, the material properties of the extruded sheet
may vary with time. Here, the stretching surface is subjected to
such amount of tension which does not alter the structure of the
porous material.
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Nomenclature

A fluid viscosity variation parameter
f non-dimensional stream function
f0 first order derivative with respect to g
f0 0 second order derivative with respect to g
f0 0 0 third order derivative with respect to g
M unsteadiness parameter
Pr Prandtl number
p,q variables
S suction parameter
T temperature of the fluid
Tw temperature of the wall of the surface
T1 free-stream temperature
u, v components of velocity in x and y directions
z variable

Greek symbols
b thermal diffusivity parameter
g similarity variable
k the non-uniform value of coefficient of thermal diffusiv-

ity
l dynamic viscosity
l* reference viscosity
m* reference kinematic viscosity
w stream function
q density of the fluid
h non-dimensional temperature
h0 first order derivative with respect to g
h0 0 second order derivative with respect to g
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The temperature of the sheet is different from that of the ambi-
ent medium. The fluid viscosity is assumed to vary with tempera-
ture while the other fluid properties are assumed constants.

The continuity, momentum and energy equations governing
such type of flow are written as
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where u and v are the components of velocity, respectively, in x and
y directions, T is the temperature, j is the coefficient of thermal dif-
fusivity (dependent on temperature), cp is the specific heat, q is the
fluid density (assumed constant), l is the coefficient of fluid viscos-
ity (dependent on temperature), k is the permeability of the porous
medium.

2.1. Boundary conditions

The appropriate boundary conditions for the problem are given
by

u ¼ Uðx; tÞ; v ¼ vwðtÞ; T ¼ Twðx; tÞ at y ¼ 0; ð4Þ
u! 0; T ! T1 as y!1; ð5Þ

where vw(t) = �v0

ffiffiffiffiffiffiffiffi
1

1�at

q
is the velocity of suction (v0 > 0) of the fluid,

Twðx; tÞ ¼ T1 þ 1
2 T0Rexð1� atÞ

�1
2 is the wall temperature [10] where

Rex ¼ Ux
m� is the local Reynolds number based on the stretching veloc-

ity U, T0 is a reference temperature such that 0 6 T0 6 Tw and m* is
the kinematic viscosity of the ambient fluid. The expressions for
U(x, t), Tw(x, t), vw(t) are valid only for time t < a�1 unless a = 0.

It is to be noted that though the velocity and temperature are
time dependent (initially), no initial condition is needed in the
boundary as the transformed equations [see (9) and (10)] and
the boundary conditions [see (11) and (12)] are independent of
‘‘t” (see Elbashbeshy and Bazid [8], Andersson et al. [10]). On the
other hand if the initial and boundary conditions are taken as [in-
stead of (4) and (5)]

t < 0 : u ¼ 0; T ¼ T1 for any x; y; ð4aÞ
t P 0 : u ¼ Uðx; tÞ; v ¼ vwðtÞ; T ¼ Twðx; tÞ at y ¼ 0; ð4bÞ

u! 0; T ! T1 as y!1 ð5Þ

then also these conditions (4) and (5) reduce to Eqs. (11) and (12).
2.2. Method of solution

We now introduce the following relations for u, v and h as

u ¼ @w
@y

; v ¼ � @w
@x

and h ¼ T � T1
Tw � T1

; ð6Þ

where w is the stream function.
The temperature-dependent fluid viscosity is given by [7]

l ¼ l�½aþ bðTw � TÞ�; ð7Þ

where l* is the constant value of the coefficient of viscosity far
away from the sheet and a, b are constants and b(> 0).

We have used viscosity–temperature relation l = a � bT (b > 0)
which is in perfect harmony with the relation l = e�aT [11] when
second and higher order terms neglected in the expansions.

The variation of thermal diffusivity with the dimensionless
temperature is written as

j ¼ j0ð1þ bhÞ: ð8Þ

b is a parameter which depends on the nature of the fluid, j0 is the
value of thermal diffusivity at the temperature Tw.

We introduce

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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With the help of the above relations, the governing equations fi-
nally reduce to

M
g
2

f 00 þ f 0
� �

þ f 02 � ff 00 ¼ �Ah0f 00 þ ðaþ AÞf 000 � Ahf 000; ð9Þ

M
2

gh0 þ 3
2

Mhþ 2f 0h� f h0 ¼ 1
Pr
ðbh02 þ h00 þ bhh00Þ; ð10Þ

where M ¼ a
c is the unsteadiness parameter, A = b(Tw � T1) is the

temperature-dependent viscosity parameter, m� ¼ l�
q .

The boundary conditions (4) and (5) then become

f 0 ¼ 1; f ¼ S; h ¼ 1 at g ¼ 0; ð11Þ
and f 0 ! 0; h! 0 as g!1; ð12Þ

where Pr ¼ m�qcp

j ¼ l�cp

j is the Prandtl number, S ¼ v0ffiffiffiffiffi
m�c
p , S > 0 corre-

sponds to suction.
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Fig. 1. Velocity profiles for variable values of unsteadiness parameter M.
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Fig. 2. Temperature profiles for variable values of unsteadiness parameter M.
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3. Numerical method for solution

The above Eqs. (9) and (10) along with the boundary conditions
are solved by converting them to an initial value problem. We
set

f 0 ¼ z; z0 ¼ p; h0 ¼ q;

p0 ¼ M
g
2

pþMzþ z2 � fpþ Apq
� �

=ðaþ A� AhÞ; ð13Þ

q0 ¼ Pr
M
2

gqþ 3
2

Mhþ 2zh� fq
� �

� bq2
� �	

ð1þ bhÞ ð14Þ

with the boundary conditions

f ð0Þ ¼ S; f 0ð0Þ ¼ 1; hð0Þ ¼ 1: ð15Þ

In order to integrate (13) and (14) as an initial value problem
we require a value for p(0), i.e. f0 0(0) and q(0), i.e. h0(0) but no such
values are given in the boundary. The suitable guess values for f0 0(0)
and h0(0) are chosen and then integration is carried out. We com-
pare the calculated values for f0 and h at g = 10 (say) with the given
boundary condition f0(10) = 0 and h(10) = 0 and adjust the esti-
mated values, f0 0(0) and h0(0), to give a better approximation for
the solution. Different values of g (such as g = 6, 8, 9, 10, etc.) are
taken in our numerical computations so that numerical values ob-
tained are independent of g chosen. We take the series of values for
f0 0(0) and h0(0), and apply the fourth order classical Runge–Kutta
method with different step sizes (h = 0.01, 0.001, etc.) so that the
numerical results obtained are independent of h. The above proce-
dure is repeated until we get the results up to the desired degree of
accuracy, 10�7.

4. Results and discussions

In order to analyse the results, numerical computations have
been carried out for various values of different parameters viz.
unsteadiness (M), temperature-dependent fluid viscosity (A), suc-
tion (S) and variable thermal diffusivity (b). To show the validity
and the convergence of the numerical solution, numerical compu-
tations are carried out for two different step sizes (viz. h = 0.005,
0.01) and the errors are calculated and presented in Table 1 (taking
a = 1, B = 1, M = 0.1, S = 0.1, b = 1 and Pr = 0.5).

For illustrations of the results, numerical values are plotted in
Figs. 1–8. In all figures, the value of ‘a’ is kept fixed to 1.

Figs. 1 and 2 exhibit the velocity and temperature profiles,
respectively, for variable unsteadiness parameter M (M = 0, 0.2,
0.4). A crossing over point appears in Fig. 1. This is a special point
where all the velocity curves cross each other, i.e. the velocity pro-
files exhibit different behaviour before and after this point. It is no-
ticed that as the unsteadiness parameter increases, fluid velocity
decreases up to the crossing over point (at g = 2) and increases
after this (Fig. 1) whereas the temperature is found to decrease
with the increasing unsteadiness parameter (Fig. 2). It is notewor-
thy that the impact of M on temperature profiles is more pro-
nounced than on the velocity profiles in Fig. 1. Rate of heat
transfer increases with increasing M.

The physical explanation behind this is as follows:
Table 1
Values of velocity gradient [�f0 0(g)] and temperature gradient [�h0(g)] for different step si

Step size (h) [�f0 0(g)]

g = 2 g = 5 g = 8

0.005 0.1195853 0.0131691 0.0026
0.01 0.1195846 0.0131685 0.0026

Error 0.0000007 0.0000006 0.0000
Fluid velocity decreases with increasing unsteadiness parame-
ter whereas increases with increasing temperature-dependent
fluid viscosity parameter. Fig. 1 exhibits the velocity profiles for
variable unsteadiness parameter (M) in presence of temperature-
dependent fluid viscosity parameter (A = 1). At a place very near
the wall, fluid velocity decreases with the increasing value of g at
a slower rate in presence of non-uniform fluid viscosity (i.e. when
A – 0). This is because as the parameter A increases (from A = 0),
the fluid viscosity decreases resulting an increase of the boundary
layer thickness. So near the wall, fluid velocity decreases with the
increasing unsteadiness parameter (M) [the effect of unsteadiness
parameter is stronger (before the crossing over point)]. But after
this point velocity decreases at a slower rate and opposite behav-
iour is noticed as here the effect of temperature-dependent viscos-
ity parameter (A) is stronger (after the crossing over point.

Figs. 3 and 4 display the nature of velocity and temperature pro-
files, respectively, for various values of temperature-dependent
fluid viscosity parameter A (A = 0, 1, 2). Fluid velocity increases
with increasing A at a particular value of g except very near the
wall as well as far away from the wall (at g = 10). This means that
zes with a = 1, A = 1, S = 0.1, M = 0.1, b = 0 and Pr = 0.5.

[�h0(g)]

g = 2 g = 5 g = 8

097 0.2163814 0.0557802 0.0081386
091 0.2160695 0.0556169 0.0081117

006 0.0003119 0.0001633 0.0000269
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Fig. 3. Velocity profiles for variable values of viscosity variation parameter A.
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Fig. 4. Temperature profiles for variable values of viscosity variation parameter A.
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Fig. 5. Velocity profiles for variable values of suction parameter S.
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Fig. 6. Temperature profiles for variable values of suction parameter S.
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Fig. 7. Velocity profiles for variable values of thermal diffusivity parameter b.
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the velocity decreases (with the increasing value of g) at a slower
rate with the increase of A at very near the wall as well as far away
from the wall. The physical explanation is as follows:

As the parameter A increases, the fluid viscosity decreases
resulting an increment of the boundary layer thickness.

In Fig. 4, variations of temperature field h(g) with g for several
values of A are shown. This figure exhibits that the temperature de-
creases with the increasing value of A. With increasing A, the ther-
mal boundary layer thickness decreases, which in turns causes to
decrease the temperature profile h(g).

Decrease in h(g) means a decrease in the velocity of the fluid
particles. So, in this case the fluid particles undergo two opposite
forces: one causes to increase the fluid velocity due to decrease
in the fluid viscosity (with increasing A) and the other causes to de-
crease the fluid velocity due to decrease in temperature h(g) (since
h decreases with increasing A). Near the surface, as the tempera-
ture h is high, the first force dominates and at far away from the
surface, h is low and so the second force dominates here.

Now we concentrate on the velocity and temperature distribu-
tion for the variation of suction parameter S in presence of A.

Fig. 5 reveals that with increasing suction (S > 0), fluid velocity
is found to decrease, i.e. suction causes to decrease the velocity
of the fluid in the boundary layer region. This effect acts to de-
crease the wall shear stress. Increase in suction causes progressive
thinning of the boundary layer. Fig. 6 exhibits that the temperature
h(g) in boundary layer also decreases with the increasing S (S > 0).
The thermal boundary layer thickness decreases with S which
causes an increase in the rate of heat transfer. Same behaviour
(due to suction) is also observed in case of uniform viscosity.
The effects of thermal diffusivity parameter on velocity and
temperature field are given in Figs. 7 and 8. Fig. 7 presents the fluid
velocity profile for several values of b (b = 0, 0.5, 1). Fluid velocity
decreases with the increasing values of b (Fig. 7) whereas the tem-
perature at a particular point of the sheet increases with increasing
values of b (Fig. 8). This is due to thickening of the thermal bound-
ary layer as a result of increasing thermal diffusivity. So the fluid
velocity decreases in this case. b = 0 gives the result in case of uni-
form thermal diffusivity.
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Fig. 8. Temperature profiles for variable values of thermal diffusivity parameter b.
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5. Conclusion

The present study gives the solutions for unsteady boundary
layer flow and heat transfer over a stretching surface with variable
fluid viscosity and thermal diffusivity in presence of wall suction.
Fluid velocity decreases up to the crossing over point due to in-
crease in unsteadiness parameter. After the crossing over point,
fluid velocity is found to increase with increasing unsteadiness
parameter. But the temperature decreases significantly in this case.
The effect of increasing temperature-dependent fluid viscosity
parameter on a viscous incompressible fluid is to increase the flow
velocity which in turn causes the temperature to decrease. The re-
sults pertaining to the present study indicate that due to suction
the fluid velocity decreases while the rate of heat transfer in-
creases. The temperature in the boundary layer decreases due to
suction. Fluid velocity decreases but the temperature increases
with increasing thermal diffusivity parameter.
It is hoped that, with the help of our present model, the physics
of flow over the stretching sheet may be utilized as the basis of
many engineering and scientific applications. The results derived
from the present study may be useful for different model
investigations.
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